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SUMMARY

This ASTM Round Robin was conducted to evaluate the state of the art
in'stress analysis of adhesively bonded joint specimens. Specifically, the
participants were asked to calculate the strain-energy-release rate for two
different geometry cracked lap shear (CLS) specimens at four different
debond lengths. The various analytical techniques consisted of 2- and
3-dimensional finite element analysis, beam theory, plate theory, and a
combination of beam theory and finite element analysis. The results were
examined in terms of the total strain-energy-release rate and the mode I to
mode II ratio as a function of debond length for each specimen geometry.
These results basically clustered into two groups: geometric linear or
geometric nonlinear analysis. The geometric nonlinear analysis is required
to properly analyze the CLS specimens. The 3-D finite element analysis
gave indications of edge closure plus some mode III loading. Each partici-
pant described their analytical technique and results. Nine laboratories

participated.
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INTRODUCTION

Many applications of adhesives result in bonded joint
geometries that have complex stress states at the bondline
termination. Debond initiation and growth may occur which could
lead to joint failure. Because debonding is a self-similar cracking
problem, it is natural to describe the phenomenon in terms of
fracture mechanics. Furthermore, depending on the joint geometry and
loading conditions, these stress states can result in three modes of

debond growth:

(1) Opening mode I, due to tensile stress normal to the plane of the

debond, results in a Gy strain- energy-release rate.

(2) Shearing mode II, due to in-plane shear stress, results in a Gyp

strain-energy-release rate.

(3) Tearing mode III, due to anti-plane shear stress, results in a

Gyyr strain-energy-release rate.

The calculation of the strain energy release rate under such
conditions is not trivial, especially when geometric non-linearities
may exist. If standard test methods are to be developed to
assess mixed mode static fracture toughness and debond propagation
rates for designing adhesively bonded joints, confidence must be
obtained in the methods used to calculate the mixed mode values of

strain energy release rate. By comparing various analytical



approaches to common problems can one determine which techniques

give acceptable answers.

This problem of calculating the strain energy release rate for
adhesive joints has been address by ASTM Task Group E24.04.09 on
Crack Growth in Adhesively Bonded Joints. ASTM Committee E-24 on
Fracture Testing sponsors this task group. The task group was formed
in 1981 to evaluate and recommend test methods for characterizing
debond propagation in adhesively-bonded joints. 1In the beginning
the task group decided that prior to conducting tests or
recommending testing procedures it needed to assess the present
state of the art in stress analyses that can be used to study debond
propagation under mixed-mode conditions in adhesively-bonded joints.
For this purpose a round robin was conducted and is described

herein.

The cracked-lap-shear (CLS) specimen [1] was chosen for
evaluation. The CLS specimen has been used for studying composite
delamination [2, 3, 4, 5] and adhesive joint debonding [1, 6, 7].
The debond tip in the CLS specimen is predominatly loaded in mode II
with approximately thirty percent mode I. The CLS specimen is
representative of the mode mix found in many applications of bonded
joints and was therefore chosen as an appropriate specimen for the
round robin. There is no known "exact" solution for the CLS
specimen. The round robin results will be compared to each other
and to experimentally observed specimen behavior to see if any

consensus "“correct" solutions exist.



The twb CLS specimen configurations analyzed are shown in Figs.
1 and 2. As shown in the figures, the difference in the two
configurations is the thickness of the lap adherends. The adherends
are aluminum. Table I gives the assumed material properties. Boundary
conditions are also shown in Figs. 1 and 2. A 11.12 kN tensile load
was applied for both specimen geometries. Perfect bonding between the
adhesive and adherend was assumed. The material properties were
considered to be linear elastic with no time-dependent behavior. For
this round-robin effort, the debond was located at the middle of the
adhesive layer although that is not usually the case in practice [7].

The debonding normally occurs near the strap adherend.

The information sought from each participant was their
calculated strain-energy-release rates, Gy and Gyr. The tearing
mode GIII was reported, if available. Debond lengths of 2.54, 6.35,

25.40, and 101.60 mm were analyzed for both specimen configurations.

Table IT lists the organizations and people who participated in
this round robin. Also listed in the table are their techniques
used to predict the strain-energy-release rates and the symbol
representing each technique used in subsequent data plots. Table II
also gives the appendix number for each participant. Each appendix
gives details about the analysis techniques used and the resulting
predictions. The techniques fall into four general classes: Closed
Form, Geometric Linear Finite Element Analysis, Geometric Nonlinear

Finite Element Analysis, and mixed Closed Form / Finite Element
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Analysis. All reported analysis used linear elastic material
properties. In this paper linear or nonlinear analysis refers to

geometric linear or geometric nonlinear analysis.
PREDICTED RESULTS

Figs. 3 and 5 show the predicted values of total strain-energy-
release rate, Gp, versus debond length, for the equal and unequal
thickness adherend, respectively, where Gp = Gy + Gyp + Grrr- The
plotted values of Gp are as calculated; however, the results are
grouped according to the analysis method. The first group (going left
to right) is the Closed Form results: the second group is the
Geometric Linear Finite Element results; and the third group is the
Geometric Nonlinear Finite Element results. The third group includes
the mixed Closed Form/Finite Element Analysis method. A symbol is
assigned to each prediction technique as given in Table 2. Figs. 4
and 6 show the predicted ratio of Gp/Gyy versus debond length for the
equal and unequal adherends, respectively. The plotted valﬁes of

Gy/Gy1 are grouped as discussed above.

For the equal thickness adherend specimen results shown in Fig.
3, the four geometric nonlinear analyses resulted in a rather constant
Gp as a function qf debond length, while the geometric linear analyses
resulted in a "humping"™ of the daté with debond length. There is
reasonable scatter (less than 10 percent) within each analysis
approach (geometric linear or nonlinear). The 3-D geometric linear

predictions ) resulted in a Gp about 10 percent higher than the
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average of the 2-D geometric linear. The geometric nonlinear analysis
results of vLaw (@) are approximately 10 percent higher than the other
nonlinear results. (Notice that Law only predicted Gp at debond
lengths of 2.54 and 101.6 mm). Law assumed plane stress conditions
while the other participants chose plane strain conditions for their
2-D analysis. The results of Erdogan's Reissner plate theory 74
approach are very close to the 2-D geometric linear F.E. analysis
while Brussat's closed-form beam theory (+4) method is close to the

geometric nonlinear F.E. analysis.

The data trends for the Gyp/Gyr ratio predictions of the equal
thickness adherends shown in Fig. 4 is similar to those previously
discussed for Gp except for the Lof's 3-D predictions ). Lof's
Gy/Gr ratios are noticeably lower than those predicted by any of the

other techniques.

The Gp behavior of the unequal thickness adherend shown in Fig.
5 is similar to that of the equal thickness adherend. Again the
plate theory and the geometric linear analyses showed a "humping"
with increasing crack length while the virtual crack extension/beam
theory method and the geometric nonlinear anélyses gave constant Ggp
with increasing crack length. Mall's (@) and Hufferd's gj) analysis
were about 10 percent below the other two nonlinear analysis and the

beam theory for some unexplained reason.

The G1/Gyy ratio predictions shown in Fig. 6 for the unequal

thickness adherends followed the same trends as the Gp predictions



with two notable exceptions: the beam theory Gy/Gry ratio was much
higher than that predicted by the geometric nonlinear analyses; and
the combination beam theory/finite element analyses resulted in a
significantly higher Gp/Grr ratio at 101.6 mm than at the shorter

debonds.

All of the finite element analyses used Rybicki and Kanninen
[9]) virtual crack closure technique to calculate values of Gy and
Grr, except for Hufferd's and Lof's. They calculated stress

intensity factor, K, then converted to strain-energy-release rates.
DISCUSSION

There is excellent agreement among the 2-D geometric nonlinear
analyses of the equal thickness adherends CLS specimen. The geometric
nonlinear analysis of Law (@) assumed plane stress conditions while
the analysis of Everett and Whitcomb (Q), Mall (@), and Dattaguru énd
Mangalgiri (@) assumed plane strain conditions. The plane stress
analysis will result in Gp being 1/(1-V%) (i.e. 1.19) higher than the
plane strain analysis. This is approximately the difference observed
in Fig. 3. In appendix VII, Law shows how the geometric nonlinear
analysis requires several iterations to converge. He also discusses
the importance of modeling the entire bondline and not just a short

portion.

For the equal and unequal adherend specimens the beam theory

Predictions of Gp are very close to the geometric nonlinear
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predictions. As seen in Figs. 4 and 6, the values of the geometric
nonlinear Gy/Gyy ratio is about the same for the equal and unequal
thickness adherends specimens (0.25 and 0.225, respectively) in
spite of the rather significant change in geometry. The beam theory
analysis results were 0.27 and 0.36, respectively. Dattaguru,
Everett, Whitcomb, and Johnson [8] have suggested that the beam
theory approach is accurate for Gy/Gyr determination for only equal
thickness adherends specimens. Brussat did not include the debond
length, a, in the calculation of Gp, Gy, and Gyy: thus, these values

are independent of debond length.

In Appendix I, Anderson, Abrahamson, and DeVries calculate Gq for
a debond length of 50.8 mm (in addition to the four lengths requested)
in the equal thickness adherend using a geometric linear analysis. The
Gp at 50.8 mm was significantly higher than for the 25.4 mm debond
length. This indicates that the "hump" predicted by geometric linear
analysis is even higher than shown in Fig. 3, indicating a larger
discrepancy between geometric linear and nonlinear analyses. 1In
Appendix IV, Erdogen and Joseph present Gp as a continuous function of

debond length, also illustrating the "humping" behavior.

In Appendix I, Anderson, Abrahamson, and DeVries presented two
sets of analytical results. The first set used a rather course mesh
and a Gp of 375 J/m? was obtained. The mesh was then refined and a
value of Gp equal 213 J/m? resulted. This was consistent with the
other 2-D linear finite element analysis. Thus, Anderson, et al.

found that too course of a mesh could give poor results.
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The gebmetric nonlinear analyses presented for the two example
problems herein predicted Gp to be practically constant with debond
length. This is not always true. For specimens with shorter lengths
or thicker strap adherends the predicted Gp may vary with debond
length [8,10]. However, the constant values of Gp with debond lenght
are believed to be the correct results for these geometry specimens.
Debond growth rates have been shown to be constant over crack lenght
in similar geometry specimens made with adhesives shown to have growth
rates that are governed by Gqp [7,11]. Furthermore, in reference 8,
measured displacements in a cracked lap shear specimen agreed closely
with the geometric nonlinear analysis and not with the linear
analysis. All of this points to the need to use a geometric nonlinear

technique for analyzing the CLS specimen [4,8].

For those configurations of the CLS specimens that do show a
variation in the geometric nonlinear Gp with debond length [8] , the
beam theory approach will give incorrect results. This is because
the beam theory will give only one value of Gp since the theory

assumes an infinite specimen length.

Mall's () approach models the crack tip area with finite
elements to calculate strain-energy-release rate but uses the beam
theory for overall specimen behavior. For equal thickness adherends
specimen, Mall's results are about 5 percent above the geométric
nonlinear finite element results. For the unequal thickness

adherend, Mall's results for shorter crack lengths are about the same
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as for the other nonlinear predictions ; however, his results are

higher for the longer crack length.

Lof's ) results were very interesting. He used a 3-D
geometrically linear finite element method. The Gp and Gy/Gyy ratios
were not very close to the 2-D analyses for reasons unknown.
However, his analysis showed that Gy and Gyy varied across the width
of the specimen and that a Gyyy existed near the edges of the
specimen. The Gp remains fairly constant across the width of the
specimen while the Gy, Gyy, and Gyyy components vary. The edge
closure discussed by Lof is quite surprising. The effects of edge
closure, which is obtained only by the 3-D analysis, needs to be

further studied.

CONCLUSIONS

Fracture mechanics is being used to describe static toughness
and damage growth behavior in adhesively bonded joints. Because the
stress states at the crack tip in a bonded joint can be complex
and result in several potential modes of crack propagation, it is
critical that the joint specimens be analyzed properly in order to
insure correct interpretation of experimental test results. To aid
in evaluating potential techniques for analyzing bonded joints,

ASTM Committee E-24 sponsored a round robin stress analysis of the
cracked-lap-shear specimen. The participants were asked to
calculate the strain-energy-release-rate at four different debond

lengths on two different geometry specimens. The results of this

9



round robin yielded the following conclusions:

1. There was good lab-to-lab consistency of predictions between
analytical techniques of the same type. For example, all 6f the 2-D
geometric linear techniques gave results within 5 percent of each
other. These results suggest that although no generally applicable
closed form solutions exists for the cracked lap shear specimen, good
consistent results can be obtained by properly using finite element

techniques.

2. The geometric nonlinear analysis techniques give results that
are most consistant with observed experimental behavior and should

therefore be used for analyzing the cracked lap shear specimen.

3. Brussat's beam theory approach gives a good closed-form
approximation of total strain-energy-release rate for the example
CLS specimens. However, beam theory does a poor job of predicting

Gr/Gry ratio when the adherends are of different thickness.

4. Care must be taken to ensure proper modeling of the specimen in
order to get correct results. For example, the adhesive bondline must
be modeled with proper grid density (as discussed by Anderson, et al.)
Also, the full bondline, not just the near crack-tip region, needs to

be included in the model (as discussed by Law).
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5. The three dimensional analysis showed that an edge closure
effect may be present at the debond front of the cracked lap shear
specimen. This analysis also indicated that a small amount of Gy
was present near the edge. The Gp remains nearly constant across
the debond front although the mixture of Gp, Gry, and Gyry varied.
This three-dimensional effect discussed by Lof needs to be studied

further.
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Table I. - Material Properties

Aluminum adherend Adhesive
72450 MPa 1932 MPa
0.33 0.40
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TABLE II - ROUND ROBIN ANALYSES & PARTICIPANTS

ANALYSIS NAME ORGANIZATION TECHNIQUE /MODEL SYMBOL APPENDIX
CLOSED FORM| T. R. BRUSSAT LOCKHEED-CALIFORNIA CO.| BEAM THEORY + II
F. ERDOGAN LEHIGH UNIVERSITY REISSNER PLATE THEORY A Iv
P. JOSEPH
GEOMETRIC G. P. ANDERSON/ |THIOKOL CORPORATION/ F. E. TASS @ I
LINEAR L. P. ABRAHAMSON [UNIVERSITY OF UTAH
K. L. DEVRIES
R. A. EVERETT NASA LANGLEY F. E. GAMNAS 0 v
J. D. WHITCOMB
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C. LOF NATIONAL AEROSPACE LAB. O VIII
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G. E. LAW GENERAL DYNAMICS/FW F. E. NASTRAN ® VII
R. A. EVERETT NASA LANGLEY F. E. GAMNAS @) v
J. D. WHITCOMB
MIXED S. MALL U. OF MISSOURI-ROLLA BEAM THEORY + LINEAR F. E. © IX

GEOMETRIC NONLINEAR
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APPENDIX I
G. P. Anderson and L. P. Abrahamson
Thiokol Corporation
Brigham City, Utah
and
: K. L. DeVries
Department of Mechanical and Industrial Engineering
University of Utah
Salt Lake City, Utah
APPROACH

The analysis of the equal thickness adherend cracked-lap-shear specimen
(CLS-A) was completed using a linear elastic finite element computer program
(TASS - generated by Morton Thiokol, Inc.). No special crack tip elements
were used. A thin row of elements was input at the center of the adhesive; a
crack was simulated by replacing these elements with "void" elements (that is,
a zero or near zero stiffness element).

Mode I and mode II energy release rates (Gj and GII) were calculated
using the modified crack closure method outlined in the reference below. The
grid network consisted of 1,710 quadrilateral elements, three elements through
the thickness of each adherend and seven through the adhesive. Each quadri-
lateral element was automatically divided into four linear displacement ele-
ments by the computer to calculate grid displacements. The grid network as
shown in Fig. I-1 contained 0.003 in. x 0.0008 in. quadrilateral elements near

the crack tip.

The modified crack closure method required the two equations:

fy(gyl - uyz)

[«2]
1}

I 24
6. = Fx(uxl - ux2)
Il 262
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where F, and Fy are the forces required to close the crack a distance
A2 and Uy, uyj are the x and y crack opening displacements a dis-

tance Aa behind the crack tip [I-1].

RESULTS

The resulting energy release rates for five crack depths are presented in
Table I-1.

The initial analysis for the 101.6 mm (4 in.) crack depth used a linear
displacement element and the grid shown in Fig. 1-2, A total energy release
rate of 375 J/m2 was obtained. It was later determined that the grid network
between x = 50.8 and x = 139.7 mm was too coarse to provide an adequate
beam bending analysis. The proper energy release rate (213 J/mz) was obtained
by using a quadratic displacement element with a coarse grid siﬁi]ar to
Fig. I-2 or by using a finer grid (Fig. I-1) with the linear displacement
element. The grid in Fig. I-2 used 1,710 elements while the grid in Fig. I-1
required 2,347 elements. The quadratic displacement element grid used 640

eight-node elements.

REFERENCES
[1-1] Rybicki, E. F. and Kanninen, M. F.: "A Finite Element Calculation of
Stress Intensity Factors by a Modified Crack Closure Integral",

Engineering Fracture Mechanics, Vol. 9, pp. 931-938, 1977.
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TABLE I-1

Calculated Strain Energy Release Rates
With Debond In Middle Of Adhesive

J/m2

Debond
Length

in. 0.10 0.25 1.0 2.0 4.0

mm., 2.54 6.35 25.40 50.80 101.60
CLSA _
Gy 35 42 57 95 48
Grp 144 153 180 234 165
GT 179 195 237 329 213
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APPENDIX II
T. R. Brussat
Lockheed-California Company
Burbank, CA 91520
APPROACH

Using elementary beam theory closed-form analytical solutions were
obtained for the m&de 1 and mode II components of the strain-energy-release
rate for both CLS specimen geometries.

Reference II-1, which first introduced the CLS specimen, provides most of
the equations used here. The assumption is made in Ref. II-1 that the length
of the specimen and crack are large compared to the thicknesses; consequently
the equations are all independent of crack length.

The adhesive layer is relatively flexible and relatively thin. The con-
tribution of adhesive stiffness can therefore be neglected. However, the
bondline thickness does significantly affect the offset distance characteriz-
ing the crack-tip eccentricity, and it also significantly affects the moment
of inertia on the uncracked end of the specimen. Therefore, bondline thick-

ness is considered in calculating these quantities.

Analytical Equations
An exact expression for total strain-energy-release rate of an infinite-

length CLS specimen is derived in Ref. 1I-1. The resulting Equation is

G, = p° 1- (ER), (11-1)
T ™ 75, (EAT, TR,

where P is the applied load; by 1is the specimen width (measured at the
bondline); (EA), is the tensile rigidity of the strap; and (EA), is the total

tensile rigidity (lap + strap).
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Ordinary beam theory is used in Ref. II-1 to obtain expressions for the
mode I crack opening displacements and the limiting value of the internal
bending moment at the crack tip for the infinite-length specimen. The deri-
vation presented in Ref. II-1 could have been modified to satisfy the round-
robin boundary conditions (i.e. specimen length and loading conditions), but
for simplicity this was not attempted. The expressions given in Ref. II-1 are
given in terms of two dimensionless parameters, "vp and y,, which are
related as follows to the bending rigidities (EI), and (EI), of the strap

section and the combined (lap + strap) section, respectively:

Xz = Vp/(EI)z
A = BIED), (11-2)

The mode I crack opening displacement a distance x from the crack tip is

given by

[ y2 - y0 'AZX
y —1—+—(-W= e + AZX -1 (11'3)

where &2 is the centroid location of the strap section, and &0 is the
centroid location of the combined section. The limiting value of internal

bending moment at the crack tip is

Yo - y_ )P
M = _('Y_Z._L')_ (11-4)
0 14 (xg/xg

An approximation for the mode I component of strain-energy-release rate

is derived in Ref. II-1 under the following assumptions:
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(1) Gy for a CLS specimen in tension is equal to Gy for a CLS specimen
subjected to end moments of magnitude M,.

(2) Gyy/Gy = 4/7 for the CLS specimen in pure bending. (This is the
exact beam-theory résult for equal thickness adherends and a zero-thickness
adhesive layer).

In accordance with these two assumptions, the Equation for Gp given in

Ref. II-1 is

2M§ (E1),
Gy = 7By (ETT, 1 - T, (11-5)

Recently the author has re-examined the second assumption above. For
purposes of the round-robin analysis study, a second way of estimating Gj was
proposed, based on the following alternative assumption:

The problem of the CLS specimen in pure bending can be separated into the
approximately Pure mode I and approximately Pure mode II problems shown in
Fig. II-1,

The pure bending of the CLS specimen under end moments, Mgs 1S shown in
Fig. II-1(a). In (b) the moment M, is balanced by a pair of moments, My
applied to the lap and M, applied to the strap. The magnitudes of My
and M, are each proportional to the ratio of the bending rigidity divided by
the centroidal distance from the bondline, (EI)y/|yqland (EI)y/|ys| respec-

tive]y.‘ This creates equal and opposite bending strains along the two faces
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of the crack, which is an antisymmetric condition. The magnitudes of M

and M, are given by

My (ET); /1y, |
M, =
1 €D /Ty T+ LTyl

(11-6)
" MO(EI)I/IyZI
2 (EI)I[I.Y]_I + (EI)Z/Ier

In Fig. II-1(c), an approximately pure mode I case is shown such that
superposition of (b) and (c) would lead to (a). Thus, the solution Gy for the
case shown in Fig. II-1(c) is an alternative approximate solution for Gy for
the CLS specimen loaded in tension. Tada, et al., (Ref. 11-2) give the

following solution for the configuration shown in Fig. II-1(c):

v 1 1
G, = + (11-7
I~ b, [(El)l (51)2:' )

In the results that follow, Method 1 uses Eq. (II-5) to estimate G,
while Method 2 uses Eqs. (II-6) and (II-7).

Grpp vanishes in this 2-dimensional analysis. Therefore, the mode II

strain-energy-release rate can be estimated by subtraction:

Grp = Gy - G (11-8)

The relative sliding-mode displacements, Ax, between the crack surfaces

result additively from the tensile load and bending moment in the strap; the
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lap is assumed to be stress-free. From the beam theory analysis results given

in Ref. II-1 it can easily be shown that

h,M = AnX
_ Px 20 2
B = TERY, * 2ED,, 1-e 7) (11-9)

where h, is the thickness of the strap.

RESULTS AND DISCUSSION

Table II-1 gives the strain-energy-release rate components for CLS A and
CLS B.

Note that the two different methods of estimating Gy give very different
results for the unequal adherend case, CLS B. Eq. (II-5) (Method 1) results
in a Gp/Gpp ratio of 0.36, whereas Eq. (II-7)(Method 2) gives Gy/Gyp = 0.54.

Since the supporting assumptions for Method 2 seem more valid, but the
results for Method 1 seem more likely to be correct, it is of interest to sub-

mit both for the round-robin study.

REFERENCES
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Cracks Handbook," Del Research Corp., Hellerton, PA 1973.

31



TABLE II-1

Calculated Values of Strain Energy Release Rate

J/m2
CLSA CLSB
Method I Method I1I Method I Method 11
Gy 44 44 74 97
GII 164 164 204 181
GT 208 208 278 278
GI/GII 0.27 0.27 0.36 0.54
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CLS specimen bending.
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APPENDIX III
B. Dattaguru and P, D. Mangalgiri
Department of Aerospace Engineering
Indian Institute of Science
Banagalore, India
APPROACH
A Finite Element Analysis was carried out on a two dimensional plane

strain idealization of the cross-section of these joints. The eccentricity of
Toad transfer in these joints causes large rotations and so a geometrically
nonlinear finite element analysis was employed (Refs. III-1, III-2, and
III-3). The basic approach used was Lagrangian where the displacements are
referred to the underformed configuration of the structure. The geometric
nonlinearity was introduced in the strain-displacement relations as

_ 1 (au)g (av)2
e ==+ =12 41|22
X X 2 X ax/ |

"\ .
v, Lfau), (av ]
¥y ay+2_<8y> +<8y>J (111-1)

u v 3u  du v Jv
= —— —_— —— —— —
Yy ~ 3y 5 | 3x 3y T ax 3y

where u and v are displacements along x and y axes. Isoparametric
elements were used, The tangent stiffness matrix at any stage of deformation

was ca]cd]ated as

KT = K0 + KL + Kg (111-2)
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where Ko, KL and Kg are the linear, large displacement and geometric
stiffness matrices. A Newton-Raphson iterative scheme was employed and the

tangent stiffness metrix was updated after every four iterations.

K
N

CALCULATIONS OF Gy AND Gpp
The mode I and mode II strain-energy-release rates Gp and Gyp were calcu-
lated based on virtual crack extension method (Ref. III-4). In order to
account for large rotation of the debond, the components of forces and dis-
placements in the directions along and normal to the center line of the
deformed debond configuration were used to calculate Gy and Gyy (Fig. III-1).

Thus

] ]
6 =1p, L2 ~¥)
I 2'y' b aa
1 (up -u3)
GII =5 Px' b2 a (I111-3)

where u' and v' are displacements along x' and y' axes as shown in

Fig. III-1,

Finite Element Model
A typical finite element mesh used for the present analysis is shown in
Fig. III-2. The mesh has 371 nodes and 320 elements. Other models varied
between 305 to 375 nodes and 258 to 320 elements. In all the models, the thin
adhesive was divided into two layers of elements across the thickness. The
applied loading was assumed to be uniform on the loaded end and was distri-

buted as a consistent load vector at the nodes.
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NUMERICAL RESULTS
Analysis was carried out for debond lengths a = 0.1, 0.25, 1.0 and

4.0 in. The strain-energy-release rates for all these cases are shown in

Table III-1.
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W. S.: Geometrically Nonlinear Analysis of Adhesively Bonded Joints.
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TABLE III-1

Calculated Strain Energy Release Rates
With Debond In Middle Of Adhesive -

J/m? 1

Debond
Length,

in. 0.10 0.25 : 1.0 4.0

mm. 2.54 6.35 25.40 101.60
CLSA
GI 37 37 37 38
Grp 150 150 151 153
Gr 187 187 188 191
CLSB
Gy 49 49 50 44
Gyg 224 225 227 218
Gy 273 274 277 262
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Figure III-1. Transformed coordinate system for G calculations.
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Figure III-2, A typical finite element mesh.
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APPENDIX IV
F. Erdogen and P. Joseph
Lehigh University, Bethlehem, PA 18015
ASSUMPTIONS |

The stress analysis of the round robin cracked-lap-shear specimens is
solved under the following assumptions:

(a) The adherends are approximated by Reissner plates. That is a plate
theory taking into account the transverse shear effects rather than continuum
elasticity is used in formulating the problem.

(b) The problem is assumed to be one of plane strain; that is e, 1is
assumed to be zero for the entire specimen.

(c) The adhesive is assumed to be an elastic layer in which the thickness
variation of stresses is neglected. In formulating the adhesive a slight im-
provement is made over the conventional uncoupled tension-shear spring model
by taking into account the effect of the average in-plane strain Exe

Partial reasons for adopting the particular analytical model for the
adhesive joint are as follows:

(1) Generally, in adhesively bonded structures, the thickness of the ad-
hesive is very small compared to the thicknesses of the adherends which, in
turn, are small compared to the in-plane dimensions of the joint. The “plate"
theory is known to deal quite satisfactorily with structures having such
geometries.

(2) The plane problem can be solved in closed form (Ref. IV-1).

(3) The technique can be extended to treat adhesively bonded joints with

complicated geometries and to take into consideration such effects as viscoe-

lastic behavior of the adhesive (Ref. IV-2),
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(4) Even though the model is not suitable for the calculation of a
"stress intensity factor", it is suitable for the calculation of the "strain-
energy-release rate".

(5) For one specimen geometry tested the tensile and shear stresses in
the adhesive obtained from the plate model appear to be in good agreement with

those given by the finite element method (Ref. IV-1).

APPROACH
The two adherends are assumed to be "plates" under in-plane deformations
and bending. The equalibrium equations for the lap and the strap adherend may

be expressed as follows:

dN dQ dMm hy +h

A et g Uyt (v-1)
N dQ M h, + h
B g Gy (1v-2)

where for i 1 and i = 2 N5y Qiys Mjxs are the stress and moment resul-
tants in the lap and strap adherends, respectively, and t and ¢ are the
shear and the normal stress in the adhesive. The stress and moment resultants
are related to the x, y-components of the displacements u;, v; and to the

rotations B4y, (i =1,2) by

du dv. Q.. ds.
AL 1 = X __1X . j= -
o - CiNiee ax t Bix ;0 dx DMixe (1=1,2) (1v-3)
C. = 1-viyVig 8. =3h. 6 D, = 12(1-v;,v4,) (1V-4)
i ﬁiEix * P57 6 i Tixy® i h3E
iTix
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Assuming that y-dependence of the strains Exs  Eys and Yxy in the

adhesive is negligible, from kinematical considerations it may be shown that

S U - (u - Ly ) _1ly ) /h
% T TR, Ty 177 151;( Up = 7 NoBoyl /Mys
du, h, dg du, h, dp
_ 1 1 "Fix 2 2 "P2x
€x ~ (dx "7 dx Tdx Y7 ax )2, (1V-5)

where hgs hp and hy, are the thicknesses of the adhesive, the lap adherend
and the strap adherend, respectively. If E, and v denote the elastic
constants of the adhesive, its stress-strain relations may be expressed as

2

= lev-2vy _ v _ 2(1+v -
Y OETN O T S Yay T T"W?‘"l (1¥-6)

By simple eliminations, Equations (IV-1)-(IV-6) may be reduced to a
system of differential equations for the functions +t(x) and o(x) which can

then be solved in closed form (see Ref. IV-1 for details).

Strain Energy Release Rate
In an elastic structure containing a flaw of "area" A, ignoring the

dynamic effects, the energy balance Equation may be expressed as
6 =3 (u-v) =
“ax Y T

where U is the work done by the external forces, V 1is the stored elastic
energy and yp s the fracture energy of the material. In Equation (IV-7)
the left-hand side represents the externally added or internally released
energy available for fracture, and Y¢ 1s the measure of the fracture resis-

tance of the material. If the bulk of the structure undergoes elastic
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deformations, it is known that G 1is the same under "fixed grip" and "fixed
load" conditions. Thus, G can be calculated similar to the crack closure
energy by considering the advance of the debond front, and by assuming fixed
grip conditions.

As the debond front advances by a length da, dU = 0 and dV (per unit
crack front) may be calculated by relaxing the stress state in the adhesive
for a volume hy (1.0)(da) and the surface tractions o(X) and t(X) acting
on the adherends along the debond area da to zero. The strain energy released

by the adherends due to the relaxation of the tractions ¢ and t may be

expressed as

_ 1 1
dv1 = -3 oda (5,c1 + 51;2) -5 tda (<ss1 + 552) (1v-8)

where & ; and &g4, (i=1,2) are the y and x-components of the displacements
of the adherend surfaces at the debond region da due to the removal of the
tractions oda and <tda and the minus sign is due to the fact that during
the release process, the directions of the forces and the displacements are
opposite to each other,

The strain energy released from the relaxation to the adhesive may be

obtained from

atda ho 1
dV2 = - f dx f dy j dz W (1v-9)
a 0 o

where W is the strain energy density in the adhesive. In the model used and
for the plane strain problem under consideration, the adhesive stresses are

assumed to be independent of y and z. Thus, Eq. (IV-9) can be expressed as

- I |
dv, = -Wh da = - ?'(Uxex + o€, + Tnyxy)hoda (1v-10)
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where W 1is calculated at the debond front. For the problem under considera-

tion we have (REF. IV-1):

2
h Ee® (a) 2 2 2
_ 0 X o (a) 1-v-2v 1 (a) 2(1-v)
W = - AR S Coa Eo 9@ (1)
-v
where E, v and G are the elastic constants of the adhesive and Eys O,

and t are calculated at the debond front a.
We now observe that the plate theory would give the displacements in the

adherends as follows:

B oda , B tda (1-vj) (i=1,2)
S¢i E 8¢ ¥ —F—

1 1

(1v-12)

From Eqs. (IV-8) and (IV-12) it then follows that as daso the strain-energy-
release rate dVi/da contributed by the adherends would approach zero. Since
dV = dVy + dV, and dA = da (per unit debond front), from Eqs. (IV-7) and (IV-

11) we obtain

2
h Ee“(a) 2 2 2
_d 0 X 1-v-2v (a) T (a) 2(1-v)
6= (V) = [ 2l = alie Sl —E__J (1v-13)

The strain-energy-release rate G calculated from Eq. (IV-13) would be
equivalent to the conventional Gy + Gyp. It should be noted that if at the
debond froﬁt the adhesive is in compression (which generally is the case if
the bending stiffness of the lap adherend is greater than that of the strap
adherend and if there is no transverse constraint in the strap adherend), then

Eq. (IV-13) should be modified as follows:
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2
h EeS(a) 2
G = GII .0 [- Ex_i + 1 (a)2§1+v)] , (a(a) < 0) (1v-14)

In this case the problem is equivalent to Ki = 0 in a crack under mixed mode

conditions, and the effect of possible crack surface friction is ignored.

RESULTS

As pointed out in the previous section, the plate model used in this
study can give only the total strain-energy-release rate G rather than Gy
and Gyy separately. Furthermore, since plane strain conditions are assumed to
prevail in z-direction, in the present solution Gy;; = 0. For the trans-
versely constrained 1oading condition and dimensions shown in Figs. IV-1 and
IV-2 the results for the complete range of the debond length are given in
Table IV-1 (see also Table IV-2). Here the adherends are assumed to be alumi-
num (E = 72.450 MPa, v = 0.33) and the elastic constants of the adhesive are
E = 1932 MPa, v = -.40., To indicate the overall trend, the results are also
shown in Fig. IV-3.

From the expression for the strain-energy-release rate given by
Eq. (IV-13) and from the calculated results, it was observed that the contri-
bution of the first term (involving ex) to G is approximately two orders of
magnitude smaller than that of the remaining terms. Thus, if the effect of

e, 1is neglected, the second and third terms in Eq. (IV-13) may be interpreted

X
as Gy and Gy, respectively. Partial results giving the individual contribu-
tions of the terms involving o, 1, and e, in Eq. (IV-13) are given in
Table IV-2 and are labeled as Gy, Gyy, and G;, respectively. Note that G
is the sum of these three terms.

Fig. IV-1 also shows the strain-energy-release rate for the cracked lap-
shear specimen without the transverse end constraint. In this problem the

transverse shear force Q at the end is zero and the specimen is free to
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“bend". Consequently, the normal stress in the adhesive is zero for the spec-
imen with equal thickness adherends and compressive for the specimen with
unequal thickness adherends. Thus, for these two specimens G is calculated
from Eq. (IV-14). A peculiar result observed in these calculations was that
in varying the debond length a from zero to 229 mm, G turned out to be con-

stant, namely

[ep]
"

45 J/m for CLS.A(h, = hy),

78 3/m? for CLS.B (hy= 2n,)

[}
]

In the plate model adopted in this study, it is assumed that in the
"debonded" part of the joint the adhesive layer is completely unloaded.
Therefore, in this model, the results are not sensitive to the location of the
"crack" in the adhesive and the calculated "crack opening displacement" does

not have the conventional meaning.
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TABLE IV-1

Calculated Strain Energy Release Rates
With Debond in Middle of Adhesive

J/m2

Debond
Length

in. 0.1 0.25 1.0 4.0

mm. 2.54 6.35 25.40 101.60
CLSA
GI 39 43 62 51
GII 145 151 180 163
Ge - 0.3 0.3 0.4 0.4
GT 184 195 243 214
CLSB
GI 102 110 126 19
GII 284 294 311 175
Ge 0.6 0.6 0.6 0.3
Gt 387 404 437 194
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Figure IV-1, Strain energy release rate vs. debond length, a, in a
constrained (insert figure I) and unconstrained (insert
figure II) cracked Tap shear specimen.
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APPENDIX V
R. A. Everett, Jr.* and J. D. Whitcomb
NASA Langley Research Center
Hampton, VA 23665
APPROACH

To analyze the cracked-lap-shear (CLS) bonded joint configurations speci-
fied in this round robin, a two-dimensional finite element program called
GAMNAS (Geometric and Material Nonlinear Analysis of Structures) was used.
This program was developed at NASA Langley to support fracture mechanics
studies of debonding and delamination and is documented in Refs. V-1 and V-2.
This study used a nonlinear geometric analysis assuming plane strain
conditions. To calculate strain-energy-release rates, GAMNAS uses a crack
closure technique Tike that reported in Ref. V-3. This is done by using the
forces transmitted through the node at the crack tip and the relative dis-
p]aﬁements of the two nodes on the crack boundary closest to the crack tip to
calculate the energy required to close the crack.

No special crack tip elements are used in GAMNAS. For this analysis a
4-node isoparametric quadrilateral element was used. This finite element
program has options for full and selective reduced integration. In this anal-
ysis selective reduced integration was used to improve the element's perfor-
mance in modeling bending type deformations.

The mesh for the CLSB specimen with a 101.6 mm debond is shown in
Fig. V-1. A1l the analyzed configurations were modeled similarly. All models
had about 1000 elements with the thickest adherend having 9 elements through-
the thickness and the thinnest having 7. The adhesive had 4 elements through-

the thickness. At the debond tip the elements had an aspect ratio of one with

* U.S. Army Aerostructures Directorate
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the length of the element being 0.032 mm. The debond was modeled as a
perfectly smooth crack between the second and third elements in the adhesive

layer (in the middle of the adhesive).

RESULTS

The strain-energy-release rates calculated in this analysis are presented
in Table V-1. Both linear and nonlinear results are given for mode I, mode
IT, and the total strain-energy-release rates at the four debond lengths
analysed.

The most significanct observation from the results in Table V-1 is that
the Gy calculated from the nonlinear geometric analysis is almost constant
with debond length, whereas, the linear results show Gy to vary with debond
length with a maximum value at one inch. The ratio of Gy/Gpp behaves in a
similar manner. In general, for both configurations the nonlinear va]qe of G
is less than the linear value. The results also show that the CLSB configura-

tion with the thicker lap adherend gives a higher value of Gr.
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TABLE V-1

Calculated Strain-Energy-Release Rate With Debond
In Center Of Adhesive, J/m~.
Linear And Nonlinear Results Are Presented.

Both Geometic

Debond
length

in. 0.10 0.25 1.0 4.0

mm. 2.54 6,35 25.4 101,6

Tinear|nonlin. 1linear|nonlin. 7linear}nonlin. Tlinear|nonlin.

CLSA
G 37 39 44 39 60 39 47 40
Gyy 145 147 149 149 180 151 163 152
Gt 182 186 193 187 240 189 212 193
CLSB
Gy 100 51 110 51 123 53 19 46
G611 284 221 291 222 312 226 175 217
GT 383 271 401 273 434 279 194 263
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Figure V-1. Finite element mesh for 101.6

mm debond in the unsymmetric
adherends specimen configuration.
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APPENDIX VI
William L. Hufferd
United Technologies

Chemical Systems Division
San Jose, California
APPROACH

Linear elastic analyses of the two cracked lap shear geometries were
conducted using two different finite element codes: TEXGAP (Ref. VI-1) and
VISTA (Ref. VI-2). Geometrically nonlinear analyses were conducted for one
cracked lap shear geometry using VISTA.

The version of TEXGAP used at CSD calculates stress intensity factors in
one of three ways: (1) using a hybrid crack element, (2) using contour inte-
gration, and (3) using a singular crack element. The hybrid crack element was
used in the current calculations. This element is based on a displacement
formulation in which the displacements are interpolated over the boundary of
the element and the stresses are interpolated over the interior of the ele-
ment. Mode I and mode II stress intensity factors are calculated directly.

The hybrid element is an 1ll-node, square element with its local coordi-
nate system located at the center of the element (i.e., the crack tip). The
element may be used for plane stress or plane strain geometries or axisym-
metric geometries at large radius. It has been reformulated for
incompressible or nearly incompressible materials, and it inc]uges thermal
loadings, but excludes body forces. The crack surfaces within the element are
assumed traction free.

The hybrid crack element used 15 interpolating, quadratic displacement
functions for boundary displacements which insure interelement compatability
with adjacent quadratic elements, and 19 different interpolating stress func-

tions for the interior of the element which identically satisfy both
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compatability and equilibrium. Symmetric and antisymmetric stress distribu-
tions are included as well as mode I and mode II stresses. The stress fields
model the square-root singularity and also incorporate eigenvalues greater
than one. The angular dependence of the stress distribution is also appro-
priately modeled.

VISTA is a finite element code for the solution of two dimensional (axi-
symmetric or generalized plane strain) quasistatic viscoelastic stress anal-
ysis problems with small strains and small or large displacements. The
singular element used for fracture mechanics analysis with VISTA is based on
the interpolating shape functions given by Stern (Ref. VI-3). It is a six-
node subparametric triangle. The corner nodes are used for geometry inter-
polation and the midside and corner nodes are used for displacement inter-
polation. Thus, it is a straight sided element. The order of the singularity
(one-half for linear elastic, isotropic materials) is input by the user. The
displacements are quadratic along the side of the element opposite the singu-
lar point, thus conforming with the quadratic isoparametric elements in VISTA.

The implementation of the element in VISTA uses the standard element
stiffness and load vector routines. Thus, the constitutive properties are
handled by the same routines as regular elements so that any material can be
used in the singular elements. The numerical integrations in the singular
element use a specially derived quadrature rule.

The code outputs the coefficients of the displacement field; i.e.,

P oo A
U, = o"f, (6)
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where A is the order of the (user specified) singularity and p and 6 are
polar triangular coordinate. For the mixed mode problem in an isotropic
linearly elastic solid with A = 1/2, the plane strain near field

displacements are given by:

——-4/;— coS = [1 - 2v + s1n2 —g—]

K 2 o
—G— —2—s1n [2-2v+ cos 2]

'
UX

K

Gl/%cos-g-[z- 2v + sinzg]
K
él/; cos§[1+2v+ s1n2 g]

where G 1is the shear modulus and v 1is Poisson's ratio for the material.

[
< -
n

Selecting the crack faces at 8 = tm for evaluating Ky and Kyy leads to

the simple expressions:

E
———— [27 f._(8)
A(1-1° v

Fa
n"

E
Kyy = 2n f (o)
I 4(1 \)2) u

55



These latter expressions were used to calculate stress intensity factors from
VISTA output for f,(e) and f,(6), from which mode I and mode II strain-

energy-release rates, Gy and Gyp, respectively were calculated using:

(1 - vz) K%
G  — =
I E
(1 - %) KE,
G =
11 E

DESCRIPTION OF ANALYSIS CONDUCTED

A typical deformed finite element model is shown in Fig. VI-1 for the
CLS-B geometry with a 25.40 mm cohesive crack through the midplane of thé
adhesive layer. The model contains 397 elements. Four eleménts were used
through the 5-mil thickness of the adhesive layer. The mesh in the neighbor-
hood of the crack tip is shown in Fig. VI-2. The crack-tip region itself was
modeled with eight singular triangular elements. The éingular elements were
overlaid with the hybrid crack element as shown in Fig. VI-3 for the TEXGAP
analyses. A1l other finite element models for analyses of both crack lap
shear geometries: CLS-A(3.18 mm thick lap and strap) and CLS-B (6.35 mm thick
Tap and 3.18 mm thick strap) were similar, except that the 4 x 4 fine mesh was
moved with the crack tip for other crack lengths.

Linear elastic analyses were conducted for both CLS geometries for 2.54,
6.35, 25.4 and 101, 6 mm cohesive cracks in the adhesive. A geometrically
nonlinear analysis was conducted for a 25.4 mm crack in the 6.35 mm lap and
3.18 mm strap CLS geometry (CLS-B). A1l analyses assumed plane strain

conditions.
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DISCUSSION OF RESULTS

One linear elastic analysis was conducted using VISTA to provide a
baseline for comparison with TEXGAP analysis results. The two codes gave
virtually identical stresses and displacements and the stress intensity
factors calculated from the coefficients of the displacements from VISTA were
within 2 percent of those obtained from the hybrid crack element used with the
TEXGAP analyses.

Table VI-1 summarizes the calculated strain-energy-release rates. A
slight maximum is observed at a crack length of about 25.4 mm. The thicker
lap of CLS-B results in higher mode I and mode II values than is observed for
the equal thickness adherends.

A geometrically nonlinear elastic analysis was conducted using VISTA in
which the total load was applied in two load steps. Convergence for the first
load step took six iterations, while that for the second took four iterations.
A major effect of the nonlinear analysis was to "smooth" the distortion of the
singular crack-tip elements on the free surface of the crack face. As a
result, K; dropped approximately 50 percent from the VISTA linear analysis
while Kj; changed only about 20 percent.

As a final remark, the absolute values of the stress intensities computed
from the nonlinear analysis should be carefully interpreted. These calcula-
tions were made assuming that the order of the crack-tip singularity was one-
half, the same as for a linear elastic analysis; and the calculations were
made using the same displacement equations as used in a Tinear elastic
analysis. The validity of these assumptions for this nonlinear problem is not
known. In general, in this situation, more reliable results would be obtained
from a patch-independent integral calculation, such as a J-integral, which has

demonstrated validity for nonlinear elasticity problems.
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TABLE VI-1

Results With Debond In Middle Of Adhesive Using TEXGAP
(Geometric Linear)

J/m2

Debond
Length,

in. 0.10 0.25 1.0 4.0

mm 2.54 6.35 25.40 101.60
CLSA
GI 35 37 60 42
GII 142 149 172 156
GT 177 186 232 198
CLSB
GI 88 114 116 47* 12
GII 282 298 310 207* 168
GT 370 412 426 254% 180

*CalcuTated using VISTA (Geometic Nonlinear) at a=25.40 mm.
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APPENDIX VII
George E. Law
General Dynamics
Fort Worth Division
Fort Worth, Texas
APPROACH

Non-linear geometric finite element analysis was performed with MSC/
NASTRAN using “Solution 64". This is a non-linear geometry solution sequence
for large displacement/small strain applications. The solution technique is
based on the geometric stiffness appanch. Details of this method are con-
tained in Section 2.9 of the "MSC/NASTRAN Application Manual Volume 1", The
MacNeal-Schwendler Corporation, Los Angeles, California, May 1983.

The two-dimensional finite-element model constructed for the analysis of
the cracked lap shear specimen analysis is shown in Fig. VII-1. Isoparametric
3-node triangles and 4-node quadrilateral elements were employed in this
model. The model was constructed using the load and out-of-plane directions
to describe the 2D space. A state of plane stress was assumed. Fig. VII-1
shows the outline of the exterior surface of the model accentuating the crack
Tine. A blow-up of the mesh at the crack tip area is also shown. Two models
were made: one with a short, incomplete glue line and the second in which the
complete glue line was modeled downstream from the crack tip. The elements in
the crack-tip region were 0.0159 x 0,0159 mm.

The boundary conditions applied to the model were

u(0,y) =0
v(0,0) = 0
v(L,0) = 0

The loading was applied as a tensile force of 2268 kg. (2500 1b.) at x = L;

the force was uniformly distributed through the thickness of the model.
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The modified crack closure technique (Ref. VII-1) was used to calculate
the mode I and mode Il components at the crack tip. Referring to Fig. VII-2,
the nodal forces at "f" and the displacements at the first upstream nodes, "g"
and "h", are combined to calculate the work to close the crack. The mode I

and mode II components of the energy release rate are calculated as

fep)
1]

2
Fy dv/2pa

D
{

n°- FX du/2aa

where

dv

]
<
1
<
=

Fy and Fy are the forces in the respective X and Y directions that
resist the crack against opening, and aa is the distance between node "f"
and nodes "g" and "h" in the undeformed state.

In the case of the non-linear geometric analysis, the X- and Y- axes for
the mode I and mode II components must be defined in the deformed state.
Fig. VI-3 shows the relations required to determine a new X' -Y' coordinate
system aligned with the crack. The results of the finite element analysis are
transformed into the X' -Y' coordinate system through standard tensor trans-

formations and the mode I and mode II components of the energy release rate

are then calculated.

RESULTS
Two glue Tine models were used in this analysis. The short glue line

model was found to produce erroneous results when compared with the full glue
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line model. This short glue Tine model was exercised for all of the analysis
cases of the round robin. Those results, although erroneous in magnitude, are
presented in Table VII-1 to describe trends in the CLS analysis. The full
glue line model was only exercised for two cases of the round robin. Since
the results for that analysis agreed with results of other round-robin partic-
ipants using nonlinear geometric analysis, it is inferred that all of the
other cases would also agree,

Table I presents the energy release rates calculated for the equal thick-
ness and unequal thickness adherend configurations. These values were calcu-
lated from the short glue line model and are only of value in that the trend
of tﬁe analysis is represented. Two observations can be made from these
results: the unequal thickness adherend shows greater mode II than the equal
thickness adherend coupon, and the calculated energy release rates are essen-
tially constant with crack length except for a slight perturbation in the
short crack length range. The increase in the mode II component with increase
in the thickness of the lap of the coupon is a direct result of increased
stiffness (EA) of the lap. The increase in lap stiffness causes greater shear
transfer across the bondline.

The relationship between energy release rate and crack length can be de-
scribed based on concepts of self-similar crack propagation. For long crack
lengths, the highly stressed zone-surrounding the crack tip does not interact
with the end boundaries. Also, since the crack is parallel to the load di-
rection, the net section is not reduced. Thus, it is inferred that the energy
release rate should be independent of crack length. For the short crack
lengths considered, the length of the crack is on the same magnitude as the

thickness of the adherends. In this case, interactions between the stresses

64



around the crack tip and the boundary conditions, particularly the free
boundary at the end of the lap, can be anticipated.

Table VII-2 gives the full glue line model results obtained for the con-
stant thickness adherend case in the short (2.54 mm) and long (101.6 mm) crack
length configurations. For the short and long crack length cases, Figs. VII-4
and VI-5 respectively show the relationship between the calculated energy
release rates and the number of iterations in the nonlinear solution. Itera-
tion number 1 represents the linear solution and numbers 2, 3, 4, and 5 repre-
sent each nonlinear iteration. These figures show that the solution for the
energy release rate converges after two nonlinear iterations demonstrating
that a Tinear solution is invalid.

Conclusions of this study are that the energy release rate is relatively
constant with crack length in the cracked-lap-shear specimen. Also, the full
glue line must be modeled in the adhesive CLS coupon to obtain proper internal

shear transfer in the analysis.
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TABLE VII-1

Calculated Strain Energy Release Rates For Short Bondline*
With Debond In Middle Of Adhesive

(*Use for analysis trends only)

J/mf

Debond
Length

in. 0.10 - 0.25 1.0 4.0

mm. 2.54 6.35 25.40 101.60
CLSA
GI 35 36 36 37
Gyp 83 84 85 6
Gr 118 120 121 123
CLSB
GI 36 38 37 33
Gyy 124 128 127 124
Gr 160 166 164 157
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TABLE VII-2

Calculated Strain Energy Release Rates For Full Glue
With Debond In Middle Of Adhesive

Line

J/m2

Debond
Length

in. 0.10 0.25 1.0 4.0

mm. 2.54 6.35 25.40 101.60
CLSA _
GI 45 - - 47
GII 176 - - 181
GT 221 - -- 228
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APPENDIX VIII
Charles J. Lof
National Aerospace Laboratory NLR
The Netherlands
APPROACH

A finite element program, ASKA (Ref. VIII-1) using three-dimensional
strain elements (isoparametric) was used. K- and G- values are assumed to be
related to displacements in the crack tip fields according to linear elastic
fracture mechanics theory as described by Paris and Sih [virr-2].

At the debond frontline, elements are applied with singular strain field
at the tips (subnet 1). Other subnets (2 ... 5) consist of normal hexagonal
27-node elements. The debond size is varied by changing x-coordinates of the
subnets in front of or behind the debond tip. The mesh is shown in
Fig. VIII-1, Gp, Gy, and Gryp are derived from K-values by Eq. (VIII-1) for

mode I

GI = K1 E (VIII-1)

Ky 1s derived from displacements of nodes close to the debond tip, using

Eq. (VIII-2).

(uy - u,)
Kp(r) = —=—2 . Enfes (VIII-2)
AT 8(1-v°)
where ujp, up are displacements at a distance r from the debond tip at the
lap- or strap-side, respectively. The Ki-value at the tip is found by linear
extrapolations of Ki(r)-values, especially from nodes of the crack tip ele-

ments. Similar formulas [VIII-1, VIII-2] are valid for mode II and mode III

within the latter case: (1+v) instead of (l-vz).
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RESULTS

Table VIII-1: G-values are derived for 3 positions along the debond 1ine'
across the specimens width, (z = 0 is the mid-plane of the bar). The Grotal-
value, however, is derived using the virtual crack extension method [VIII-2]

and the equation:

%% (VIII-3)

G:
where dU is the elastic energy variation by a very small local cracksize

variation dA.

dU = u [S - s*Ju

where U is the displacement vector and [S - S*] is the variation of the
stiffness by virtual debond variation.

This total energy release value is expected to be considerably more accu-
rate than the separate Gy, Gpp, GIII—va1ues obtained. However, the distri-
bution over three modes can not be found in this way.

With respect to the total strain-energy-release rate results
(Table VIII-1) we propose some adaption in order to properly compare these
three~-dimensional results with other two-dimensional data. Therefore, a
"weighted average" of these results for discrete positions along the debond-

zone frontline is proposed in the following form:

G A4 ) + .5G + .1G

tot(av) - Gtot(z=0 tot(z=.4) tot(z=.5)
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Different factors refer to different areas of virtual debond extensions
(Fig VIII-2). The corrected results are given in Table VIII-2.

A remarkable effect found by the three-dimensional calculation is the
"closure" of the debond-opening at the edges of the specimen, as seen by
detail-observations of cross-sectional deformations of both adherends, in a
plane very close behind the debond tip (Fig. VIII-3). Local Gy-values
decrease rapidly from the mid-plane towards the side of the bar, whereas
Gppp-values increase.

Unfortunately, this phenonema was not studied in more detail, i.e. by

using finer meshes, or non-linear calculation.
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TABLE VIII-1

Calculated Strain Energy Release Rates

With Debond In Middle Of Adhesive

J/m2

Debond
Length,

in. 0.10 0.25 1.0 4.0

mm. 2.54 6.35 25.40 101.60
Zy

1.0 in 0 4 .5 0 .4 .5 0 4 .5 0 4 .5

mid side| mid side | mid side | mid side

CLSA
GI 14 7 0 17 8 0 28 12 .05 23 10 0
Gr1 119 105 122 | 135 113 136 | 154 131 155 | 141 115 136
GIII 0 3 33 0 13 38 0 16 47 0 16 43
Gr 205 187 194 | 224 208 217 | 281 255 255 | 247 222 222
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TABLE VIII-2

Total Strain Energy Release Rate for CLSA

Debond length Gtot (averaged)
a, mm J/m2
2.54 1.95
6.35 216
25,40 266
101,60 232
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APPENDIX IX
S. Mall
Department of Engineering Mechanics
University of Missouri
Rolla, MO
APPROACH

The analysis of cracked-lap-shear specimens requires a geometric non-
tinear method [IX-1, IX-2]. 1In the present approach, this nonlinear analysis
was conducted by combining a simple nonlinear analysis (based on strength-of-
materials theory) with a linear finite element analysis in the following
manner [IX-3]. Figure IX-1(a) shows the cracked-lap-shear specimen which is
to be analyzed with a geometric nonlinear method to account for the
deformation which responds nonlinearly to the applied load geometry. Figure
IX-1(b) shows a small region of this specimen near the debond front. This
region near the debond front can be analyzed with a linear method provided
moments, axial and shear loads acting on the boundary are obtained from a
nonlinear analysis.

A nonlinear analysis based on a simple strength-of-materials theory was
developed to compute moments, axial and shear loads acting on the boundary of
the small region of the CLS specimen as shown in Fig. IX-1(b). This nonlinear
analysis is the extension of a previous analysis [IX-4]. The previous anal-
ysis was for an infinitely long CLS specimen (i.e. independent of debond

Tength), while the present one accounts for the finite Tength of the specimen

and the debond. Fig. IX-2 shows the CLS specimen and the deformation of
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its centroidal axis. From the simple beam theory, the following expressions

for lateral deflection of centroidal axis were obtained.

x>0
) ()-/2-)-/0)A0C0th()‘0f0) sinh (Azz,z-xzx)
y(x) = Apcoth(2,2,) + Xgcoth(Ry2,) : sinh(,1,)
x <0
-(¥5-=Yn)r,coth( ) sinh( -AnX)
y(x) = 27/ 2pC0tN (K b %%

ApC0th(ny2y) + XgC0th(Rg2g) * ~ sTnh(i;%,)

Ay =4/ P/ (EL),
q/r_______

Ag T P/(EI)O

Using the above equations, the moments, axial and shear loads acting on the
small region shown in Fig. IX-1(b) were computed. Thereafter, this region
with computed boundary loads and moments was analyzed with a two-dimensional
linear elastic finite element analysis.

The finite element mesh consisted of 510 four-node, isoparametric quadri-
lateral elements and had 1200 degrees for freedom. The length of region ana-
lyzed with FEM was 6.35 mm on each side of debond front (i.e. total Tength of
12.7 mm). The analysis was conducted under plane strain condition. The adhe-
sive was modeled with four layers of elements. The smallest element size near
the crack tip was 0.0318 x 0.0318 mm. The strain-energy-release rates Gr, Gp,
and Gy in the FEM analysis were computed using a virtual crack closure tech-

nique (Ref. IV-5).

80



RESULTS
The computed strain-energy-release rates (61, Grs and Gyy) for both CLS A

and CLS B specimens are presented in Table IX-1.

DISCUSSION
A simple apprbach for analysing the geometric nonlinear problem of the
CLS specimen is suggested by combining a simple nonlinear analysis (based on

the strength-of-materials theory) and linear finite element analysis.
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TABLE IX-1

Calculated Strain Energy Release Rates With
Debond In Middle Of Adhesive

(J/m2)

Debond
Length,

in. 0.10 0.25 1.0 2.0 4.0

mm. 2.54 6.35 25.40 50.80 101.60
CLSA
Gy 42 43 44 44 45
Grp 149 149 151 151 152
Gt 191 192 195 195 197
CLSB
GI 51 52 54 57 68
Gr1 200 202 205 209 222
GT 251 254 259 266 290
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Figure IX-1. Simplified nonlinear analysis of cracked lap shear specimen.
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